Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Emerg Infect Dis ; 29(1): 127-132, 2023 01.
Article in English | MEDLINE | ID: covidwho-2306282

ABSTRACT

A single SARS-CoV-2 vaccine dose reduces onward transmission from case-patients. We assessed the potential effects of receiving 2 doses on household transmission for case-patients in England and their household contacts. We used stratified Cox regression models to calculate hazard ratios (HRs) for contacts becoming secondary case-patients, comparing contacts of 2-dose vaccinated and unvaccinated index case-patients. We controlled for age, sex, and vaccination status of case-patients and contacts, as well as region, household composition, and relative socioeconomic condition based on household location. During the Alpha-dominant period, HRs were 0.19 (0.13-0.28) for contacts of 2-dose BNT162b2-vaccinated case-patients and 0.54 (0.41-0.69) for contacts of 2-dose Ch4dOx1-vaccinated case-patients; during the Delta-dominant period, HRs were higher, 0.74 (0.72-0.76) for BNT162b2 and 1.06 (1.04-1.08) for Ch4dOx1. Reduction of onward transmission was lower for index case-patients who tested positive ≥2 months after the second dose of either vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , BNT162 Vaccine , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , England/epidemiology
3.
Wellcome Open Res ; 2023.
Article in English | EuropePMC | ID: covidwho-2255340

ABSTRACT

Background: The ability of SARS-CoV-2 vaccines to protect against infection and onward transmission determines whether immunisation can control global circulation. We estimated the effectiveness of Pfizer-BioNTech mRNA vaccine (BNT162b2) and Oxford AstraZeneca adenovirus vector vaccine (ChAdOx1) vaccines against acquisition and transmission of the Alpha and Delta variants in a prospective household study in England. Methods: : Households were recruited based on adult purported index cases testing positive after reverse transcription-quantitative (RT-q)PCR testing of oral-nasal swabs. Purported index cases and their household contacts took oral-nasal swabs on days 1, 3 and 7 after enrolment and a subset of the PCR-positive swabs underwent genomic sequencing conducted on a subset. We used Bayesian logistic regression to infer vaccine effectiveness against acquisition and transmission, adjusted for age, vaccination history and variant. Results: : Between 2 February 2021 and 10 September 2021, 213 index cases and 312 contacts were followed up. After excluding households lacking genomic proximity (N=2) or with unlikely serial intervals (N=16), 195 households with 278 contacts remained, of whom 113 (41%) became PCR positive. Delta lineages had 1.53 times the risk (95% Credible Interval: 1.04 – 2.20) of transmission than Alpha;contacts older than 18 years old were 1.48 (1.20 – 1.91) and 1.02 (0.93 – 1.16) times more likely to acquire an Alpha or Delta infection than children. Effectiveness of two doses of BNT162b2 against transmission of Delta was 36% (-1%, 66%) and 49% (18%, 73%) for ChAdOx1, similar to their effectiveness for Alpha. Protection against infection with Alpha was higher than for Delta, 69% (9%, 95%) vs. 18% (-11%, 59%), respectively, for BNT162b2 and 24% (-41%, 72%) vs. 9% (-15%, 42%), respectively, for ChAdOx1. Conclusions: : BNT162b2 and ChAdOx1 reduce transmission of the Delta variant from breakthrough infections in the household setting, although their protection against infection within this setting is low.

4.
N Engl J Med ; 385(7): 585-594, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-2251957

ABSTRACT

BACKGROUND: The B.1.617.2 (delta) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), has contributed to a surge in cases in India and has now been detected across the globe, including a notable increase in cases in the United Kingdom. The effectiveness of the BNT162b2 and ChAdOx1 nCoV-19 vaccines against this variant has been unclear. METHODS: We used a test-negative case-control design to estimate the effectiveness of vaccination against symptomatic disease caused by the delta variant or the predominant strain (B.1.1.7, or alpha variant) over the period that the delta variant began circulating. Variants were identified with the use of sequencing and on the basis of the spike (S) gene status. Data on all symptomatic sequenced cases of Covid-19 in England were used to estimate the proportion of cases with either variant according to the patients' vaccination status. RESULTS: Effectiveness after one dose of vaccine (BNT162b2 or ChAdOx1 nCoV-19) was notably lower among persons with the delta variant (30.7%; 95% confidence interval [CI], 25.2 to 35.7) than among those with the alpha variant (48.7%; 95% CI, 45.5 to 51.7); the results were similar for both vaccines. With the BNT162b2 vaccine, the effectiveness of two doses was 93.7% (95% CI, 91.6 to 95.3) among persons with the alpha variant and 88.0% (95% CI, 85.3 to 90.1) among those with the delta variant. With the ChAdOx1 nCoV-19 vaccine, the effectiveness of two doses was 74.5% (95% CI, 68.4 to 79.4) among persons with the alpha variant and 67.0% (95% CI, 61.3 to 71.8) among those with the delta variant. CONCLUSIONS: Only modest differences in vaccine effectiveness were noted with the delta variant as compared with the alpha variant after the receipt of two vaccine doses. Absolute differences in vaccine effectiveness were more marked after the receipt of the first dose. This finding would support efforts to maximize vaccine uptake with two doses among vulnerable populations. (Funded by Public Health England.).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , Case-Control Studies , Female , Humans , Male , Middle Aged , Treatment Outcome , United Kingdom/epidemiology , Vaccine Potency , Young Adult
5.
BMJ Open ; 13(3): e068611, 2023 03 29.
Article in English | MEDLINE | ID: covidwho-2270939

ABSTRACT

INTRODUCTION: While still a ubiquitous disease of childhood, chickenpox has been effectively controlled in many countries through the use of vaccination. Previous health economic assessment of the use of these vaccines in the UK were based on limited quality of life data and only routinely collected epidemiological outcomes. METHODS AND ANALYSIS: This two armed study will carry prospective surveillance of hospital admissions and recruit from community settings to measure the acute quality of life loss caused by paediatric chickenpox both in the UK and in Portugal. The quality of life effects on children and their primary and secondary caregivers will be assessed using the EuroQol EQ-5D with the Child Health Utility instrument (CHU-9) in addition for children. Results will be used to derive quality-adjusted life year loss estimates for cases of simple varicella and the secondary complications. ETHICS AND DISSEMINATION: We have received National Health Service ethical approval (REC ref: 18/ES/0040) for the inpatient arm, university ethical approval (University of Bristol ref: 60721) for the community arm and 10 sites currently are recruiting in the UK and 14 in Portugal. Informed consent is obtained from the parent(s). Results will be disseminated in peer-reviewed publications. TRIAL REGISTRATION NUMBER: ISRCTN15017985.


Subject(s)
Chickenpox , Child , Humans , Chickenpox/epidemiology , Prospective Studies , State Medicine , Quality of Life , Hospitalization , Hospitals
6.
Epidemiol Infect ; 151: e58, 2023 03 20.
Article in English | MEDLINE | ID: covidwho-2249126

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) rapidly replaced Delta (B.1.617.2) to become dominant in England. Our study assessed differences in transmission between Omicron and Delta using two independent data sources and methods. Omicron and Delta cases were identified through genomic sequencing, genotyping and S-gene target failure in England from 5-11 December 2021. Secondary attack rates for named contacts were calculated in household and non-household settings using contact tracing data, while household clustering was identified using national surveillance data. Logistic regression models were applied to control for factors associated with transmission for both methods. For contact tracing data, higher secondary attack rates for Omicron vs. Delta were identified in households (15.0% vs. 10.8%) and non-households (8.2% vs. 3.7%). For both variants, in household settings, onward transmission was reduced from cases and named contacts who had three doses of vaccine compared to two, but this effect was less pronounced for Omicron (adjusted risk ratio, aRR 0.78 and 0.88) than Delta (aRR 0.62 and 0.68). In non-household settings, a similar reduction was observed only in contacts who had three doses vs. two doses for both Delta (aRR 0.51) and Omicron (aRR 0.76). For national surveillance data, the risk of household clustering, was increased 3.5-fold for Omicron compared to Delta (aRR 3.54 (3.29-3.81)). Our study identified increased risk of onward transmission of Omicron, consistent with its successful global displacement of Delta. We identified a reduced effectiveness of vaccination in lowering risk of transmission, a likely contributor for the rapid propagation of Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , England/epidemiology
7.
Lancet Infect Dis ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2276836

ABSTRACT

BACKGROUND: Little is known about protection against SARS-CoV-2 infection following previous infection with specific individual SARS-CoV-2 variants, COVID-19 vaccination, and a combination of previous infection and vaccination (hybrid immunity) in adolescents. We aimed to estimate protection against symptomatic PCR-confirmed infection with the delta (B.1.617.2) and omicron (B.1.1.529) variants in adolescents with previous infection, mRNA vaccination, and hybrid immunity. METHODS: We conducted an observational, test-negative, case-control study using national SARS-CoV-2 testing and COVID-19 mRNA vaccination data in England. Symptomatic adolescents aged 12-17 years who were unvaccinated or had received primary BNT162b2 immunisation at symptom onset and had a community SARS-CoV-2 PCR test were included. Vaccination and previous SARS-CoV-2 infection status in adolescents with PCR-confirmed COVID-19 (cases) were compared with vaccination and previous infection status in adolescents who had a negative SARS-CoV-2 PCR test (controls). Vaccination data were collected from the National Immunisation Management System, and were linked to PCR testing data. The primary outcome was protection against SARS-CoV-2 delta and omicron infection (defined as 1 - odds of vaccination or previous infection in cases divided by odds of vaccination or previous infection in controls). FINDINGS: Between Aug 9, 2021, and March 31, 2022, 1 161 704 SARS-CoV-2 PCR tests were linked to COVID-19 vaccination status, including 390 467 positive tests with the delta variant and 212 433 positive tests with the omicron variants BA.1 and BA.2. In unvaccinated adolescents, previous SARS-CoV-2 infection with wildtype, alpha (B.1.1.7), or delta strains provided greater protection against subsequent delta infection (>86·1%) than against subsequent omicron infection (<52·4%); previous delta or omicron infection provided similar protection against omicron reinfection (52·4% [95% CI 50·9-53·8] vs 59·3% [46·7-69·0]). In adolescents with no previous infection, vaccination provided lower protection against omicron infection than against delta infection, with omicron protection peaking at 64·5% (95% CI 63·6-65·4) at 2-14 weeks after dose two and 62·9% (60·5-65·1) at 2-14 weeks after dose three, with waning protection after each dose. Adolescents with hybrid immunity from previous infection and vaccination had the highest protection, irrespective of the SARS-CoV-2 strain in the primary infection. The highest protection against omicron infection was observed in adolescents with vaccination and previous omicron infection, reaching 96·4% (95% CI 84·4-99·1) at 15-24 weeks after vaccine dose two. INTERPRETATION: Previous infection with any SARS-CoV-2 variant provided some protection against symptomatic reinfection, and vaccination added to this protection. Vaccination provides low-to-moderate protection against symptomatic omicron infection, with waning protection after each dose, while hybrid immunity provided the most robust protection. Although more data are needed to investigate longer-term protection and protection against infection with new variants, these data question the need for additional booster vaccine doses for adolescents in populations with already high protection against SARS-CoV-2 infection. FUNDING: None.

8.
JMIR Public Health Surveill ; 8(12): e39141, 2022 12 19.
Article in English | MEDLINE | ID: covidwho-2198102

ABSTRACT

BACKGROUND: The Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) is one of Europe's oldest sentinel systems, working with the UK Health Security Agency (UKHSA) and its predecessor bodies for 55 years. Its surveillance report now runs twice weekly, supplemented by online observatories. In addition to conducting sentinel surveillance from a nationally representative group of practices, the RSC is now also providing data for syndromic surveillance. OBJECTIVE: The aim of this study was to describe the cohort profile at the start of the 2021-2022 surveillance season and recent changes to our surveillance practice. METHODS: The RSC's pseudonymized primary care data, linked to hospital and other data, are held in the Oxford-RCGP Clinical Informatics Digital Hub, a Trusted Research Environment. We describe the RSC's cohort profile as of September 2021, divided into a Primary Care Sentinel Cohort (PCSC)-collecting virological and serological specimens-and a larger group of syndromic surveillance general practices (SSGPs). We report changes to our sampling strategy that brings the RSC into alignment with European Centre for Disease Control guidance and then compare our cohort's sociodemographic characteristics with Office for National Statistics data. We further describe influenza and COVID-19 vaccine coverage for the 2020-2021 season (week 40 of 2020 to week 39 of 2021), with the latter differentiated by vaccine brand. Finally, we report COVID-19-related outcomes in terms of hospitalization, intensive care unit (ICU) admission, and death. RESULTS: As a response to COVID-19, the RSC grew from just over 500 PCSC practices in 2019 to 1879 practices in 2021 (PCSC, n=938; SSGP, n=1203). This represents 28.6% of English general practices and 30.59% (17,299,780/56,550,136) of the population. In the reporting period, the PCSC collected >8000 virology and >23,000 serology samples. The RSC population was broadly representative of the national population in terms of age, gender, ethnicity, National Health Service Region, socioeconomic status, obesity, and smoking habit. The RSC captured vaccine coverage data for influenza (n=5.4 million) and COVID-19, reporting dose one (n=11.9 million), two (n=11 million), and three (n=0.4 million) for the latter as well as brand-specific uptake data (AstraZeneca vaccine, n=11.6 million; Pfizer, n=10.8 million; and Moderna, n=0.7 million). The median (IQR) number of COVID-19 hospitalizations and ICU admissions was 1181 (559-1559) and 115 (50-174) per week, respectively. CONCLUSIONS: The RSC is broadly representative of the national population; its PCSC is geographically representative and its SSGPs are newly supporting UKHSA syndromic surveillance efforts. The network captures vaccine coverage and has expanded from reporting primary care attendances to providing data on onward hospital outcomes and deaths. The challenge remains to increase virological and serological sampling to monitor the effectiveness and waning of all vaccines available in a timely manner.


Subject(s)
COVID-19 , General Practitioners , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , COVID-19 Vaccines , State Medicine , Vaccination , United Kingdom/epidemiology
9.
Int J Med Inform ; 170: 104974, 2023 02.
Article in English | MEDLINE | ID: covidwho-2165398

ABSTRACT

BACKGROUND: In England routine vaccinations are recorded in either the patients General Practice record or in series of sub-national vaccine registers that are not interoperable. During the COVID-19 pandemic it was established that COVID vaccines would need to be delivered in multiple settings where current vaccine registers do not exist. We describe how a national vaccine register was created to collect data on COVID-19 vaccines. METHODS: The National Immunisation Management System (NIMS) was developed by a range of health and digital government agencies. Vaccinations delivered are entered on an application which is verified by individual National Health Service number in a centralised system. UKHSA receive a feed of this data to use for monitoring vaccine coverage, effectiveness, and safety. To validate the vaccination data, we compared vaccine records to self-reported vaccination dose, manufacturer, and vaccination date from the enhanced surveillance system from 11 February 2021 to 24 August 2021. RESULTS: With the Implementation of NIMS, we have been able to successfully record COVID-19 vaccinations delivered in multiple settings. Of 1,129 individuals, 97.8% were recorded in NIMS as unvaccinated compared to those who self-reported as unvaccinated. One hundred percent and 99.3% of individuals recorded in NIMS as having at least one dose and two doses of the COVID-19 vaccine were also self-reported as having at least one and two doses, respectively. Of the 100% reporting at least one dose, 98.3% self-reported the same vaccination date as NIMS. A total of 98.8% and 99.3% had the same manufacturer information for their first dose and second dose as that which was self-reported, respectively. DISCUSSION: Daily access to individual-level vaccine data from NIMS has allowed UKHSA to estimate vaccine coverage and provide some of the world's first vaccine effectiveness estimates rapidly and accurately.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines , Pandemics , State Medicine , Immunization Programs , Registries , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
10.
Nat Commun ; 13(1): 7688, 2022 12 12.
Article in English | MEDLINE | ID: covidwho-2160207

ABSTRACT

Despite the availability of the ChAdOx1-S booster vaccine, little is known about the real-world effectiveness although clinical trials have demonstrated enhanced immunity following a ChAdOx1-S booster. In England 43,171 individuals received a ChAdOx1-S booster whilst 13,038,908 individuals received BNT162b2 in the same period. ChAdOx1-S booster recipients were more likely to be female (adjusted odds ratio (OR) 1.67 (1.64-1.71)), in a clinical risk group (adjusted OR 1.58 (1.54-1.63)), in the clinically extremely vulnerable group (adjusted OR 1.84 (1.79-1.89)) or severely immunosuppressed (adjusted OR 2.05 (1.96-2.13)). The effectiveness of the ChAdOx1-S and BNT162b2 boosters is estimated here using a test-negative case-control study. Protection against symptomatic disease with the Omicron variant peaks at 66.1% (16.6 to 86.3%) and 68.5% (65.7 to 71.2%) for the ChAdOx1-S and BNT162b2 boosters in older adults. Protection against hospitalisation peaks at 82.3% (64.2 to 91.3%) and 90.9% (88.7 to 92.7%). For Delta, effectiveness against hospitalisation is 80.9% (15.6% to 95.7%) and 93.9% (92.8% to 94.9%) after ChAdOx1-S and BNT162b2 booster vaccination. This study supports the consideration of ChAdOx1-S booster vaccination for protection against severe COVID-19 in settings yet to offer boosters and suggests that individuals who received a ChAdOx1-S booster do not require re-vaccination ahead of others.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Female , Aged , Male , Case-Control Studies , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , ChAdOx1 nCoV-19
12.
Euro Surveill ; 27(15)2022 04.
Article in English | MEDLINE | ID: covidwho-1869325

ABSTRACT

BackgroundHouseholds appear to be the highest risk setting for COVID-19 transmission. Large household transmission studies in the early stages of the pandemic in Asia reported secondary attack rates ranging from 5 to 30%.AimWe aimed to investigate the transmission dynamics of COVID-19 in household and community settings in the UK.MethodsA prospective case-ascertained study design based on the World Health Organization FFX protocol was undertaken in the UK following the detection of the first case in late January 2020. Household contacts of cases were followed using enhanced surveillance forms to establish whether they developed symptoms of COVID-19, became confirmed cases and their outcomes. We estimated household secondary attack rates (SAR), serial intervals and individual and household basic reproduction numbers. The incubation period was estimated using known point source exposures that resulted in secondary cases.ResultsWe included 233 households with two or more people with 472 contacts. The overall household SAR was 37% (95% CI: 31-43%) with a mean serial interval of 4.67 days, an R0 of 1.85 and a household reproduction number of 2.33. SAR were lower in larger households and highest when the primary case was younger than 18 years. We estimated a mean incubation period of around 4.5 days.ConclusionsRates of COVID-19 household transmission were high in the UK for ages above and under 18 years, emphasising the need for preventative measures in this setting. This study highlights the importance of the FFX protocol in providing early insights on transmission dynamics.


Subject(s)
COVID-19 , Adolescent , Family Characteristics , Humans , Pandemics , SARS-CoV-2 , United Kingdom/epidemiology
13.
Age Ageing ; 51(5)2022 05 01.
Article in English | MEDLINE | ID: covidwho-1860800

ABSTRACT

INTRODUCTION: residents of long-term care facilities (LTCFs) are at high risk of adverse outcomes from SARS-CoV-2. We aimed to estimate the vaccine effectiveness (VE) of one and two doses of BNT162b2 and ChAdOx-1 against SARS CoV-2 infection and COVID-19-related death in residents of LTCFs. METHODS: this observational study used testing, vaccination and mortality data for LTCF residents aged ≥ 65 years who were regularly tested regardless of symptoms from 8 December 2020 to 30 September 2021 in England. Adjusted VE, calculated as one minus adjusted hazard ratio, was estimated using time-varying Cox proportional hazards models for infection and death within 28 days of positive test result. Vaccine status was defined by receipt of one or two doses of vaccine and assessed over a range of intervals. RESULTS: of 197,885 LTCF residents, 47,087 (23.8%) had a positive test and 11,329 (5.8%) died within 28 days of a positive test during the study period. Relative to unvaccinated individuals, VE for infection was highest for ChAdOx-1 at 61% (40-74%) at 1-4 weeks and for BNT162b2 at 69% (52-80%) at 11-15 weeks following the second dose. Against death, VE was highest for ChAdOx-1 at 83% (58-94%) at 1-4 weeks and for BNT162b2 at 91% (75-97%) at 11-15 weeks following second dose. CONCLUSIONS: compared with unvaccinated residents, vaccination with one dose of BNT162b2 or ChAdOx-1 provided moderate protection against infection and death in residents of LTCFs. Protection against death improved after two doses. However, some waning of protection over time was noted.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , England/epidemiology , Humans , Long-Term Care , Proportional Hazards Models
14.
J Infect ; 84(5): 675-683, 2022 05.
Article in English | MEDLINE | ID: covidwho-1788130

ABSTRACT

Background COVID-19 vaccines approved in the UK are highly effective in general population cohorts, however, data on effectiveness amongst individuals with clinical conditions that place them at increased risk of severe disease are limited. Methods We used GP electronic health record data, sentinel virology swabbing and antibody testing within a cohort of 712 general practices across England to estimate vaccine antibody response and vaccine effectiveness against medically attended COVID-19 amongst individuals in clinical risk groups using cohort and test-negative case control designs. Findings There was no reduction in S-antibody positivity in most clinical risk groups, however reduced S-antibody positivity and response was significant in the immunosuppressed group. Reduced vaccine effectiveness against clinical disease was also noted in the immunosuppressed group; after a second dose, effectiveness was moderate (Pfizer: 59.6%, 95%CI 18.0-80.1%; AstraZeneca 60.0%, 95%CI -63.6-90.2%). Interpretation In most clinical risk groups, immune response to primary vaccination was maintained and high levels of vaccine effectiveness were seen. Reduced antibody response and vaccine effectiveness were seen after 1 dose of vaccine amongst a broad immunosuppressed group, and second dose vaccine effectiveness was moderate. These findings support maximising coverage in immunosuppressed individuals and the policy of prioritisation of this group for third doses.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunity , SARS-CoV-2 , Vaccine Efficacy
15.
J Infect Dis ; 226(5): 808-811, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1758754

ABSTRACT

To investigate if the AY.4.2 sublineage of the SARS-CoV-2 delta variant is associated with hospitalization and mortality risks that differ from non-AY.4.2 delta risks, we performed a retrospective cohort study of sequencing-confirmed COVID-19 cases in England based on linkage of routine health care datasets. Using stratified Cox regression, we estimated adjusted hazard ratios (aHR) of hospital admission (aHR = 0.85; 95% confidence interval [CI], .77-.94), hospital admission or emergency care attendance (aHR = 0.87; 95% CI, .81-.94), and COVID-19 mortality (aHR = 0.85; 95% CI, .71-1.03). The results indicate that the risks of hospitalization and mortality are similar or lower for AY.4.2 compared to cases with other delta sublineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitalization , Humans , Retrospective Studies
17.
Nat Med ; 28(4): 831-837, 2022 04.
Article in English | MEDLINE | ID: covidwho-1740457

ABSTRACT

Booster vaccination with messenger RNA (mRNA) vaccines has been offered to adults in England starting on 14 September 2021. We used a test-negative case-control design to estimate the relative effectiveness of a booster dose of BNT162b2 (Pfizer-BioNTech) compared to only a two-dose primary course (at least 175 days after the second dose) or unvaccinated individuals from 13 September 2021 to 5 December 2021, when Delta variant was dominant in circulation. Outcomes were symptomatic coronavirus disease 2019 (COVID-19) and hospitalization. The relative effectiveness against symptomatic disease 14-34 days after a BNT162b2 or mRNA-1273 (Moderna) booster after a ChAdOx1-S (AstraZeneca) and BNT162b2 as a primary course ranged from around 85% to 95%. Absolute vaccine effectiveness ranged from 94% to 97% and was similar in all age groups. Limited waning was seen 10 or more weeks after the booster. Against hospitalization or death, absolute effectiveness of a BNT162b2 booster ranged from around 97% to 99% in all age groups irrespective of the primary course, with no evidence of waning up to 10 weeks. This study provides real-world evidence of substantially increased protection from the booster vaccine dose against mild and severe disease irrespective of the primary course.


Subject(s)
COVID-19 , Adult , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , England/epidemiology , Hospitalization , Humans , Infant , SARS-CoV-2 , mRNA Vaccines
18.
N Engl J Med ; 386(16): 1532-1546, 2022 04 21.
Article in English | MEDLINE | ID: covidwho-1730372

ABSTRACT

BACKGROUND: A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS: Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS: Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccine Efficacy , 2019-nCoV Vaccine mRNA-1273/therapeutic use , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , ChAdOx1 nCoV-19/therapeutic use , Humans , Immunization, Secondary/adverse effects , SARS-CoV-2/genetics
19.
BMJ Open ; 12(3): e055278, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1723800

ABSTRACT

OBJECTIVE: To determine characteristics associated with COVID-19 vaccine coverage among individuals aged 50 years and above in England since the beginning of the programme. DESIGN: Observational cross-sectional study assessed by logistic regression and mean prevalence margins. SETTING: COVID-19 vaccinations delivered in England from 8 December 2020 to 17 May 2021. PARTICIPANTS: 30 624 257/61 967 781 (49.4%) and 17 360 045/61 967 781 (28.1%) individuals in England were recorded as vaccinated in the National Immunisation Management System with a first dose and a second dose of a COVID-19 vaccine, respectively. INTERVENTIONS: Vaccination status with COVID-19 vaccinations. MAIN OUTCOME MEASURES: Proportion, adjusted ORs and mean prevalence margins for individuals not vaccinated with dose 1 among those aged 50-69 years and dose 1 and 2 among those aged 70 years and above. RESULTS: Of individuals aged 50 years and above, black/African/Caribbean ethnic group was the least likely of all ethnic groups to be vaccinated with dose 1 of the COVID-19 vaccine. However, of those aged 70 years and above, the odds of not having dose 2 was 5.53 (95% CI 5.42 to 5.63) and 5.36 (95% CI 5.29 to 5.43) greater among Pakistani and black/African/Caribbean compared with white British ethnicity, respectively. The odds of not receiving dose 2 was 1.18 (95% CI 1.16 to 1.20) higher among individuals who lived in a care home compared with those who did not. This was the opposite to that observed for dose 1, where the odds of being unvaccinated was significantly higher among those not living in a care home (0.89 (95% CI 0.87 to 0.91)). CONCLUSIONS: We found that there are characteristics associated with low COVID-19 vaccine coverage. Inequalities, such as ethnicity are a major contributor to suboptimal coverage and tailored interventions are required to improve coverage and protect the population from SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , England/epidemiology , Ethnicity , Humans , Middle Aged , SARS-CoV-2 , Vaccination
20.
Lancet Infect Dis ; 21(11): 1529-1538, 2021 11.
Article in English | MEDLINE | ID: covidwho-1637724

ABSTRACT

BACKGROUND: The effectiveness of SARS-CoV-2 vaccines in older adults living in long-term care facilities is uncertain. We investigated the protective effect of the first dose of the Oxford-AstraZeneca non-replicating viral-vectored vaccine (ChAdOx1 nCoV-19; AZD1222) and the Pfizer-BioNTech mRNA-based vaccine (BNT162b2) in residents of long-term care facilities in terms of PCR-confirmed SARS-CoV-2 infection over time since vaccination. METHODS: The VIVALDI study is a prospective cohort study that commenced recruitment on June 11, 2020, to investigate SARS-CoV-2 transmission, infection outcomes, and immunity in residents and staff in long-term care facilities in England that provide residential or nursing care for adults aged 65 years and older. In this cohort study, we included long-term care facility residents undergoing routine asymptomatic SARS-CoV-2 testing between Dec 8, 2020 (the date the vaccine was first deployed in a long-term care facility), and March 15, 2021, using national testing data linked within the COVID-19 Datastore. Using Cox proportional hazards regression, we estimated the relative hazard of PCR-positive infection at 0-6 days, 7-13 days, 14-20 days, 21-27 days, 28-34 days, 35-48 days, and 49 days and beyond after vaccination, comparing unvaccinated and vaccinated person-time from the same cohort of residents, adjusting for age, sex, previous infection, local SARS-CoV-2 incidence, long-term care facility bed capacity, and clustering by long-term care facility. We also compared mean PCR cycle threshold (Ct) values for positive swabs obtained before and after vaccination. The study is registered with ISRCTN, number 14447421. FINDINGS: 10 412 care home residents aged 65 years and older from 310 LTCFs were included in this analysis. The median participant age was 86 years (IQR 80-91), 7247 (69·6%) of 10 412 residents were female, and 1155 residents (11·1%) had evidence of previous SARS-CoV-2 infection. 9160 (88·0%) residents received at least one vaccine dose, of whom 6138 (67·0%) received ChAdOx1 and 3022 (33·0%) received BNT162b2. Between Dec 8, 2020, and March 15, 2021, there were 36 352 PCR results in 670 628 person-days, and 1335 PCR-positive infections (713 in unvaccinated residents and 612 in vaccinated residents) were included. Adjusted hazard ratios (HRs) for PCR-positive infection relative to unvaccinated residents declined from 28 days after the first vaccine dose to 0·44 (95% CI 0·24-0·81) at 28-34 days and 0·38 (0·19-0·77) at 35-48 days. Similar effect sizes were seen for ChAdOx1 (adjusted HR 0·32, 95% CI 0·15-0·66) and BNT162b2 (0·35, 0·17-0·71) vaccines at 35-48 days. Mean PCR Ct values were higher for infections that occurred at least 28 days after vaccination than for those occurring before vaccination (31·3 [SD 8·7] in 107 PCR-positive tests vs 26·6 [6·6] in 552 PCR-positive tests; p<0·0001). INTERPRETATION: Single-dose vaccination with BNT162b2 and ChAdOx1 vaccines provides substantial protection against infection in older adults from 4-7 weeks after vaccination and might reduce SARS-CoV-2 transmission. However, the risk of infection is not eliminated, highlighting the ongoing need for non-pharmaceutical interventions to prevent transmission in long-term care facilities. FUNDING: UK Government Department of Health and Social Care.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Nursing Homes/statistics & numerical data , Age Factors , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Vaccines/administration & dosage , ChAdOx1 nCoV-19 , England/epidemiology , Female , Humans , Immunization Schedule , Incidence , Male , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Prospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL